Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(30): e1905366, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32548863

RESUMO

Intestinal organoids are useful in vitro models for basic and translational studies aimed at understanding and treating disease. However, their routine culture relies on animal-derived matrices that limit translation to clinical applications. In fact, there are few fully defined, synthetic hydrogel systems that allow for the expansion of intestinal organoids. Here, an allyl sulfide photodegradable hydrogel is presented, achieving rapid degradation through radical addition-fragmentation chain transfer (AFCT) reactions, to support routine passaging of intestinal organoids. Shear rheology to first characterize the effect of thiol and allyl sulfide crosslink structures on degradation kinetics is used. Irradiation with 365 nm light (5 mW cm-2 ) in the presence of a soluble thiol (glutathione at 15 × 10-3 m), and a photoinitiator (lithium phenyl-2,4,6-trimethylbenzoylphosphinate at 1 × 10-3 m), leads to complete hydrogel degradation in less than 15 s. Allyl sulfide hydrogels are used to support the formation of epithelial colonies from single intestinal stem cells, and rapid photodegradation is used to achieve repetitive passaging of stem cell colonies without loss in morphology or organoid formation potential. This platform could support long-term culture of intestinal organoids, potentially replacing the need for animal-derived matrices, while also allowing systematic variations to the hydrogel properties tailored for the organoid of interest.


Assuntos
Compostos Alílicos/química , Hidrogéis/química , Hidrogéis/metabolismo , Organoides/metabolismo , Fotólise , Compostos de Sulfidrila/química , Sulfetos/química , Animais , Mucosa Intestinal/citologia , Luz , Camundongos , Reologia , Resistência ao Cisalhamento , Solubilidade
2.
Adv Healthc Mater ; 9(8): e1901214, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957249

RESUMO

Intestinal organoid protocols rely on the use of extracellular scaffolds, typically Matrigel, and upon switching from growth to differentiation promoting media, a symmetry breaking event takes place. During this stage, the first bud like structures analogous to crypts protrude from the central body and differentiation ensues. While organoids provide unparalleled architectural and functional complexity, this sophistication is also responsible for the high variability and lack of reproducibility of uniform crypt-villus structures. If function follows form in organoids, such structural variability carries potential limitations for translational applications (e.g., drug screening). Consequently, there is interest in developing synthetic biomaterials to direct organoid growth and differentiation. It has been hypothesized that synthetic scaffold softening is necessary for crypt development, and these mechanical requirements raise the question, what compressive forces and subsequent relaxation are necessary for organoid maturation? To that end, allyl sulfide hydrogels are employed as a synthetic extracellular matrix mimic, but with photocleavable bonds that temporally regulate the material's bulk modulus. By varying the extent of matrix softening, it is demonstrated that crypt formation, size, and number per colony are functions of matrix softening. An understanding of the mechanical dependence of crypt architecture is necessary to instruct homogenous, reproducible organoids for clinical applications.


Assuntos
Intestinos , Organoides , Matriz Extracelular , Mucosa Intestinal , Reprodutibilidade dos Testes
3.
Adv Sci (Weinh) ; 6(3): 1801483, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30775233

RESUMO

Bone marrow derived human mesenchymal stem cells (hMSCs) are a promising cell source for regenerative therapies; however, ex vivo expansion is often required to achieve clinically useful cells numbers. Recent results reveal that when MSCs are cultured in stiff microenvironments, their regenerative capacity can be altered in a manner that is dependent on time (e.g., a mechanical dosing analogous to a chemical one). It is hypothesized that epigenomic modifications are involved in storing these mechanical cues, regulating gene expression, and ultimately leading to a mechanical memory. Using hydrogels containing an allyl sulfide cross-linker and a radical-mediated addition-fragmentation chain transfer process, in situ softened hMSC-laden hydrogels at different time points are achieved and the effects of short-term and long-term mechanical dosing on epigenetic modifications in hMSCs are quantified. Results show that histone acetylation and chromatin organization adapt rapidly after softening and can be reversible or irreversible depending on time of exposure to stiff microenvironments. Furthermore, epigenetic modulators are differentially expressed depending on the culture history. Collectively, these experiments suggest that epigenetic remodeling can be persistent and might be a memory keeper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...